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Highlights  Abstract  

▪ The masked data of components from the 

storage system is investigated. 

▪ The initial reliability of the storage products are 

introduced. 

▪ The improved EM-like algorithm is used to 

update the testing data. 

▪ An LS-based EM-like algorithm is proposed 

for estimating the storage reliability with 

masked data. 

 Storage reliability is of importance for the products that largely stay in 

storage in their total life-cycle such as warning systems for harmful 

radiation detection, and many kinds of defense systems, etc. Usually, the 

field-testing data can be available, but the failure causes for a series 

system cannot be always known because of the masked information. In 

this paper, the storage reliability model with possibly initial failures is 

studied on the statistical analysis method when the masked data are 

considered. To optimize the use of the masked survival data from storage 

systems, a technique based on the least squares (LS) method with an 

EM-like algorithm, is proposed for the series system. The parametric 

estimation procedure based on the LS method is developed by applying 

the algorithm to update the testing data, and then the LS estimation for 

the initial reliability and failure rate of the components constituting the 

series system are investigated. In the case of exponentially distributed 

storage lifetime, a numerical example is provided to illustrate the method 

and procedure. The results should be useful for accurately evaluating the 

production reliability, identifying the production quality, and planning a 

storage environment. 
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1. Introduction 

Some systems, such as warning systems for harmful radiation 

detection, rescue systems, spare parts for aircrafts, etc., may 

spend most of their time in storage, but once needed, must be 

fully functional [18]. Especially for some one-shot products, 

such as missiles, that can be used for only one time, and 

destroyed or extensively rebuilt after the use [19]. These types 

of products are being in a dormant state in the life cycle, and the 

operation time is usually very short compared with the time in 

storage. Consider the performance-based logistics in real life, 

storage reliability dominates the efforts in achieving the mission 

reliability goal. Nevertheless, the failure mechanisms of the 

products involved are completely different from those in active 

use, which imply that the storage reliability model should be 

considered by taking the operation reliability into account, and 

the reliability analysis for this type of products in storage is 

therefore important in practice. 
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Based on different assumptions, there have been some 

storage models proposed [6, 14, 20, 34, 35,]. In the existing 

literatures, the storage reliability models are commonly to 

assume that the products are perfect at the beginning of the 

storage. Theoretically, the operational reliability of this type of 

product is not always 100% at the beginning of storage, and the 

initial probability of reliability should be considered in the 

evaluation model. Factually, some one-shot products may have 

only 96% operational reliability when they are newly produced. 

For example, to assess the storage reliability with initial failures, 

Zhao and Xie [37] proposed a generalized storage reliability 

model and estimated the initial reliability of storage product 

based on the least square method. Based on the simple non-

parametric estimate of the current reliability, they [38] also 

studied the problem of parametric estimation based on a simple 

Weibull distribution assumption. Without consideration of the 

initial probability of failures, an excessively optimistic 

prediction on the storage reliability would be obtained. 

Therefore, the initial reliability embedded in the storage 

reliability models is necessary and has an important practical 

significance. 

Obviously, operation reliability degrades with the storage 

time of product, and may become very low after the products 

are stored for a certain time period. To ensure that the products 

can complete the specified mission when required, condition 

monitoring, replacement or maintenance has to be carried out 

periodically [3, 10, 17, 27, 10, 17, 9, 22, 12], meanwhile, some 

field-observed data is recorded. In order to combine all 

available data to obtain a more accurate estimate, Zhang et al. 

[34] proposed an integrated approach to estimate the storage 

reliability based on the combinational estimation of the failure 

numbers and field-testing data. Consider the case of very few or 

even no failures, the reliability of the product cannot be very 

low [5], Zhang et al. [35] applied the E-Bayesian estimate of the 

failure probabilities into the approach proposed in document 

[34]. However, all the survival data from components 

constituting a parallel system is not always observed directly. 

The field-testing data can be available, but the failure causes 

cannot be always known due to various reasons such as high 

cost, difficulty to diagnosis, lack of enough information, etc. 

This is the case where the lifetimes of components are masked 

for the causes of some failures are unknown or the components 

resulting in the system failures cannot be completely identified 

[29, 30]. As far as a parallel system is concerned, it fails if and 

only if all components constituting the system fail, and the 

success data from the surviving system may contain some failed 

components, and the exact successes from the components are 

masked. Generally, the cause may only be isolated to some 

subset of the system’s components, and the equivalent data of 

components from the system is usually called masked data [28]. 

Therefore, the field data from storage components integrating 

with masked data has great significance in theory for evaluating 

the storage life of component. 

In 1988, Usher and Hodgson [30] analyzed the component 

reliability based on the masked system life data using maximum 

likelihood (ML) technique. For a general series system, the 

expression of the likelihood function was derived by Usher & 

Hodgson [28, 29], and the ML estimation was considered in the 

cases of two and three-component systems, and it was shown 

that the closed-form ML estimators are algebraically intractable. 

The masked data analysis was also studied by Hutto, Mazzuchi, 

& Sarkani [8] for a superimposed renewal process. Lin et al. [15] 

extended the results of Usher and Hodgson (1988) by deriving 

exact ML estimates for the general case of a series system, and 

developed a Bayesian approach [16] which considers prior 

information on the component reliabilities. Consider a parallel 

system with non-identical exponential lifetime components, 

Sarhan et al. [24, 25, 26] investigated the Bayes estimates of 

component reliabilities using masked-system life data. For the 

series-parallel and parallel-series hybrid systems with masked 

data, wang et al. [31] investigated the ML and interval 

estimation of parameters. Using the masked data from 

accelerated life test, Cai et al. [2] estimated the reliability of a 

log-normal series system based on the EM algorithm, and then 

derived the approximate confidence intervals of failure rate and 

investigated the ML estimations of the failure rate using the EM 

measure [1]. Assuming that the components have Weibull life 

distributions, Misaei et al. [21] estimated the parameters of the 

competing risks model with masked failure data. In software 

reliability, the ML estimation of software reliability were also 

considered for superimposed nonhomogeneous Poisson 

processes in the case of the masked data [23, 32, 33, 36]. Based 

on the exponential life distribution of storage component and 

system, Zhao et al. [39] investigated the masked failure data 
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from series system being in storage based on the LS method, but 

not considered the masked success data about the storage 

system with parallel connection. 

Life data of components from storage products are often 

used to estimate the storage reliability of the individual 

components. These estimates are useful since they reflect the 

storage reliability of the components under actual storage 

conditions. In this paper, the masked storage life data from the 

series system are applied into the storage reliability model with 

the possible initial failures, where the masked data are the 

groups of binomial-type system failure data. The masked data 

of failed components is excavated from the failed series systems. 

Consider closed-form ML estimates are algebraically 

intractable, a general method of the parametric estimates is 

developed by applying a modified EM algorithm to LS 

estimation, and the EM-like algorithm is applied for updating 

the testing data. In the case of exponential storage lifetime of 

components constituting series system, the method and 

procedure are formulized in detail. Finally, a numerical example 

is also provided to illustrate the method and procedure. The 

results should be useful for planning a storage environment, 

decision-making concerning the maximum length of storage, 

maintenance strategy optimization and identifying the 

production quality. 

The remainder of this paper is organized as follows. For 

predicting the storage reliability, Section 2 gives a generalized 

storage reliability model with initial reliability. Section 3, an 

EM-like approach based on the masked data is presented for 

estimating the parameters of proposed models in the case of 

exponential distribution. For illustrating the EM-like method,  

a numerical case is provided to demonstrate the method and 

procedure in Section 4. Lastly, Section 5 gives the conclusions 

of the paper. 

2. Storage reliability model with initial failures 

Generally, storage reliability is considered to be the ability of  

a product that can still be able to perform its required functions 

after it has been in the storage state for a certain period of time 

under specific storage environment [2]. For illustrating the EM 

measure which estimates storage reliability based on LS 

estimates, in this section, a generalized models for storage 

component and system are developed and some assumptions 

from the engineering practice are presented. 

2.1 A generalized storage reliability model 

Usually, the storage reliability of products can be defined as the 

probability that the product can perform its specific function for 

a period of specific storage time [39]. So, the storage reliability 

at time 𝑡 can be represented as 

𝑅(𝑡) = 𝑃{𝑇 > 𝑡}   (1) 

where, the storage lifetime 𝑇 of a product is a real stochastic 

variable, and the event "𝑇 > 𝑡"  means that the product can 

perform its specific function after a period of storage time 𝑡. In 

practice, the real storage lifetime 𝑇  of a product is hard to 

observe, but it is commonly truncated in the manner that the 

value of 𝑇 can be known to be between two specific time points, 

greater or less than a given value of the time at which it is tested. 

If the storage lifetime 𝑇  is assumed as an exponential 

distribution with parameter 𝜆, then the storage reliability at time 

𝑡 based on Eq. (1) can be given by 

𝑅(𝑡) = 𝑒𝑥𝑝( − 𝜆𝑡), 𝑡 ≥ 0.   

In this case, the reliability is equal to 1 at the beginning 𝑡 =

0, which means that the products or systems are perfect before 

they arrive at the storage stage. Furthermore, if let Ω represent 

certainty that ‘the product is perfect at time zero’, then 𝑃(Ω) =

1 and Eq. (1) can be rewritten as 

𝑅(𝑡) = 𝑃{(𝑇 > 𝑡) ∩ Ω} = 𝑃{𝑇 > 𝑡, Ω}.  (2) 

Obviously, Eq. (2) means that the storage reliability is equal 

to the probability of joint event, where the joint event is 

comprised of a basic event ′(𝑇 > 𝑡)′ and a certain event ′Ω′.  

However, this is not always true in engineering that the 

products are perfect at the beginning of storage, and the initial 

reliability of the product is an essential part that should be taken 

into consideration [37]. Denoted by 𝐴 the basic event that ‘the 

initial state of the product’, then Eq. (2) can be represented as 

𝑅(𝑡) = 𝑃{𝑇 > 𝑡, 𝐴} . Using the law of the probability 

multiplication, the storage reliability of the product can be 

deduced as 

𝑅(𝑡) = 𝑃(𝐴) ∙ 𝑃{𝑇 > 𝑡 | 𝐴} = 𝑅0𝑅𝑆(𝑡), 𝑡 ≥ 0.     (3) 

Where, 𝑅0 is the probability which equals to 𝑃(𝐴), and 𝑅𝑆(𝑡) is 

the conditional probability 𝑃{𝑇 > 𝑡 | 𝐴}. 

2.2 Initial reliability and inherent reliability 

Theoretically, 𝑅0  in Eq. (3) can be interpreted as the initial 

reliability of the product and takes value in interval [0,1], and 
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may not be completely known for the products in storage. The 

meaning of initial reliability 𝑅0  can be different for different 

types of products. For one-shot devices, 𝑅0  should be the 

probability that the devices without storage can finish its 

required function successfully. Obviously for this kind of 

products in storage, 𝑅0  can never be completely known. 

However, for electronic components, 𝑅0 may be interpreted as 

the proportion of non-defective components. If all the products 

are inspected before the storage starts, the initial reliability 𝑅0 

could be assumed to be known. However, 100% testing is not 

practical because of the extra high costs for inspection, or even 

impossible for many types of products, such as explosive 

products. 

The conditional probability 𝑅𝑆(𝑡)  is usually called as the 

inherent storage reliability [37], which reveals entirely the effect 

of the storage on the products and the failure process of the 

products due to the material deterioration in storage. In 

engineering, some common lifetime distributions, such as 

exponential, Weibull or lognormal distributions, can be applied 

to model the inherent storage reliability. Obviously, 𝑅0  and 

𝑅(0) are all the storage reliability at time zero and have 𝑅(0) =

𝑅0, so the inherent storage reliability is equal to 1 at time 𝑡 = 0 

in Eq. (3). Therefore, the expression 1 − 𝑅𝑆(𝑡) can be deduced 

as a cumulative failure distribution function, and have the 

distribution family {𝐹(𝑡, 𝜃), 𝜃 ∈ Θ}  with an unknown 

parameter 𝜃, i.e. 

𝑅(𝑡, 𝜃) = 𝑅0 ∙ (1 − 𝐹(𝑡, 𝜃)).    

2.3 Modeling assumptions 

To evaluate the storage reliabilities of components constituting 

a series system, it is necessary to develop some measures for 

estimating the unknown parameters using the field and masked 

data. Based on the engineering practice and periodic testing data, 

some assumptions are listed as follows:  

(a). Experiment environment for the storage systems and 

components keep unchanged. 

(b). Systems or components are not always perfect at the 

beginning of storage, i.e., the initial reliability of storage 

satisfies 0 ≤ 𝑅0 ≤ 1. 

(c). The series system composed of 𝑚 components denoted 

by 1, 2,⋯ ,𝑚. At the beginning of experiment, the same type of 

𝑁 systems, and 𝑁𝑖0 components 𝑖 (𝑖 = 1, 2,⋯ ,𝑚) are put into 

storage. 

(d). The product systems or components are sampled 

randomly at time 𝑡𝑗(𝑗 = 1,2,⋯ , 𝑣) , and not returned storage 

experiment. 

(e). Number of tested samples is much less than the total size 

of the population at each testing time. 

(f). The outcome of the testing is s-independent, and all the 

failed or survived samples among tested ones can be detected. 

(g). The masked data of components is obtained from the 

failed series systems. 

Apparently, the assumptions (a) – (g) stem from the case of 

storage practice, where assumption (a) is taken to ensure the 

effect of stable storage conditon on the reliability of products 

and the homology of testing data. Assumption (b) indicates the 

initial reliability of storage samples, and (c) – (g) determine the 

activity of testing. 

2.4 Reliability model of storage system with series 

connection 

In practice, the exponential life distribution can simulate the 

degradation process of material in the storage state and also has 

the simple form [18], the lifetime of systems and components 

are usually assumed as this type distribution. To simplify the 

method presented in this paper, the exponential distribution is 

applied for the inherent storage reliability although the method 

can be valid for a general lifetime distribution. The reliability 

expressed in Eq. (1) for the 𝑖 -th components is therefore 

rewritten as 

𝑅𝑖(𝑡) = 𝑅0𝑖 𝑒𝑥𝑝( − 𝜆𝑖𝑡), 𝑖 = 1,2,⋯ ,𝑚,  (4) 

where, 𝑅0𝑖 is the initial reliability of 𝑖-th storge component, and 

𝜆𝑖 is the failure ratio. 

For a series system with 𝑚 components, the storage lifetime 

𝑇  can be written as 𝑚𝑖𝑛 (𝑇1, 𝑇2, ⋯ , 𝑇𝑚) , and the storage 

reliability at time 𝑡 should be 

𝑅(𝑡) = 𝑝{𝑚𝑖𝑛( 𝑇1, 𝑇2, ⋯ , 𝑇𝑚) > 𝑡} 

= 𝑝{𝑇1 > 𝑡,⋯ , 𝑇𝑖 > 𝑡,⋯ , 𝑇𝑚 > 𝑡} 

= ∏ Pr{𝑇𝑖 > 𝑡}𝑚
𝑖=1 = ∏ 𝑅𝑖(𝑡)

𝑚
𝑖=1   

= 𝑅01𝑅02⋯𝑅0𝑚 ∙ 𝑒𝑥𝑝[−(𝜆1 + 𝜆2 +⋯+ 𝜆𝑚)𝑡].             (5) 

Therefore, based on the components 1, 2,⋯ ,𝑚 of the series 

system, the inherent storage reliability of system using Eq. (3) 

and Eq. (5) can be expressed as 

𝑅𝑠(𝑡) =
𝑅01𝑅02⋯𝑅0𝑚

𝑅0
∙ 𝑒𝑥𝑝[−(𝜆1 + 𝜆2 +⋯+ 𝜆𝑚)𝑡]. 
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Using Eq. (3), the storage reliability of system at time 𝑡 can 

be expressed as 

𝑅(𝑡) = 𝑅0 𝑒𝑥𝑝( − 𝜆𝑡),  (6) 

where, 𝜆 is the failure ratio and 𝑅0 the initial reliability. Then 

the initial reliability for the system, using Eq. (5) and Eq. (6), 

can be deduced as 

𝑅0 = 𝑅01𝑅02⋯𝑅0𝑚 ∙ 𝑒𝑥𝑝[(𝜆 − 𝜆1 − 𝜆2 −⋯− 𝜆𝑚)𝑡]    (7) 

Especially, Eq. (7) can be simplified as 𝑅0 = 𝑅01𝑅02⋯𝑅0𝑚 

as 𝑡 = 0, and which indicates the initial reliability of system can 

be determined by its components. Furthermore, according to Eq. 

(5), the mean time to failure (MTTF) of the system can be 

deduced as 

𝐸𝑇|𝑛 = ∫ 𝑅(𝑡)𝑑𝑡
∞

0

=
1

𝜆1 + 𝜆2 +⋯+ 𝜆𝑛
                (8) 

3. EM-like approach for estimating parameter based on 

masked data 

For the components of storage system, the field failure data can 

be collected at testing time. In fact, we only can observe that the 

storage system is failed or survived at testing time, and it is 

difficult to determine which one or ones have been failed or 

survived. As far as a surviving series system is concerned, all 

the components of the system must be survived. Apparently, all 

the failed components may be unknown or masked for a failed 

series system. Therefore, how to dig the masked data of 

components in a storage system is very important for properly 

evaluating the reliabilities of components constituting the 

system. 

3.1 Masked failure data 

Suppose that the product systems with series connection in 

storage have the binomial-type failure data at sequential 

observation times 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑣. For obtaining the masked 

data, some entire products are in the storage states, meanwhile, 

some components constituting the product are also put into 

storage. At testing time 𝑡𝑗 (𝑗 = 1,2,⋯ , 𝑣) , 𝑛𝑗  (𝑛𝑗 ≪ 𝑁) 

products (i.e., systems) are randomly sampled from 𝑁 storage 

products, where 𝑓𝑗  products failed and 𝑠𝑗  (𝑗 = 1,2,⋯ , 𝑣)  ones 

survived. In the meantime, 𝑛𝑖𝑗  of the 𝑁𝑖0 (𝑛𝑖𝑗 ≪ 𝑁𝑖0) 

components, for the component 𝑖  in storage, are randomly 

sampled, where 𝑓𝑖𝑗 failed components are detected and 𝑠𝑖𝑗  (𝑖 =

1,2,⋯ ,𝑚)  components are surviving. The detailed data from 

product systems and components are listed in Table 1. 

Table 1. Binomial-type failure data at sequential observation 

times 𝑡𝑗 (𝑗 = 1,2,⋯ , 𝑣). 

Causes of 

failures 

Testing times 

𝑡1 𝑡2 ⋯ 𝑡𝑣 

System (𝑛1, 𝑓1, 𝑠1) (𝑛2, 𝑓2, 𝑠2) ⋯ (𝑛𝑣, 𝑓𝑣 , 𝑠𝑣) 

Component 1 (𝑛11, 𝑓11 , 𝑠11) (𝑛12, 𝑓12 , 𝑠12) ⋯ (𝑛1𝑣 , 𝑓1𝑣 , 𝑠1𝑣) 

Component 2 (𝑛21, 𝑓21 , 𝑠21) (𝑛22, 𝑓22 , 𝑠22) ⋯ (𝑛2𝑣, 𝑓2𝑣 , 𝑠2𝑣) 

⋮ ⋮ ⋮ ⋮ ⋮ 

Component 𝑚 (𝑛𝑚1, 𝑓𝑚1, 𝑠𝑚1) (𝑛𝑚2, 𝑓𝑚2, 𝑠𝑚2) ⋯ (𝑛𝑚𝑣 , 𝑓𝑚𝑣 , 𝑠𝑚𝑣) 

Note that the data in Table 1 satisfies 𝑛𝑗 = 𝑓𝑗 + 𝑠𝑗 , 𝑛𝑖𝑗 =

𝑓𝑖𝑗 + 𝑠𝑖𝑗 , 𝑖 = 1,2,⋯ ,𝑚, 𝑗 = 1,2,⋯ , 𝑣. 

The failure of the product (system) is not identified on which 

component’s failures, and then called to be masked. For a series 

connection system, the system would fail as long as one 

component in the system fails, and the cause may only be 

isolated to some subset 𝐹  of the system’s components for  

a series system, where nonempty subset 𝐹  {1, 2, , 𝑚} . 

Especially, the surviving component set for a series system is 

{1, 2, ,𝑚}. For demonstrating the masked data in series system 

clearly, the general form of data displays in Table 2 and 

represents the life length and true cause of failure, where the 

true cause of system failure was found by simply observing the 

minimum life length of the three components 𝐴 , 𝐵  and 𝐶 . 

Apparently, there are four types of masked data for a two-

component system and six types for a three-component one. 

Assuming that only one component in the system fails at some 

time points, Table 2 lists the six types of masked data for  

a random sample of systems. 

Table 2. Different types data for a three-component system with 

masking. 

System Time to failure 
Component 

causing failure 
Masking set 𝑆𝑖 

𝑆1 𝑇1 A {𝐴} 

𝑆2 𝑇2 𝐵 {𝐵} 

𝑆3 𝑇3 𝐶 {𝐶} 

𝑆4, 𝑆5, 𝑆6 𝑇4 𝐴∗ {𝐴, 𝐵}{𝐴, 𝐶}{𝐴, 𝐵, 𝐶} 

𝑆4, 𝑆7, 𝑆6 𝑇5 𝐵∗ {𝐴, 𝐵}{𝐵, 𝐶}{𝐴, 𝐵, 𝐶} 

𝑆5, 𝑆7, 𝑆6 𝑇6 𝐶∗ {𝐴, 𝐶}{𝐵, 𝐶}{𝐴, 𝐵, 𝐶} 

Note that the notations 𝐴 , 𝐵  and 𝐶  suggest that the true 

cause of system failure can be found, and 𝐴∗ , 𝐵∗ , 𝐶∗  indicate 

that the cause of system failure is only isolated to some subset 

{𝐴, 𝐵, 𝐶} of the system’s components. 
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3.2 Parameter estimation without masked data 

Note that if the masked data is not considered, then the storage 

reliability of each component at testing times using ML method 

can be simply estimated as 

�̂�𝑖(𝑡𝑗) =
𝑛𝑖𝑗 − 𝑓𝑖𝑗

𝑛𝑖𝑗
=
𝑠𝑖𝑗

𝑛𝑖𝑗
, 𝑖 = 1,2,⋯ ,𝑚 ;  𝑗 = 1,2,⋯ , 𝑣. 

To avoid the inverted data of the point estimation, Zhang et 

al. [35] obtained the following E-Bayesian estimates of storage 

reliability at testing time. 

�̂�𝑖(𝑡𝑗) = 1 −
1

𝑐 − 1
∬

𝑎 + 𝑓𝑖𝑗

𝑎 + 𝑏 + 𝑠𝑖𝑗
𝑑𝑎𝑑𝑏

0<𝑎<1,1<𝑏<𝑐

,   (9) 

where the hyper-parameters 𝑎, 𝑏 should satisfy 0 < 𝑎 < 1, 𝑏 >

1 and it is suitable for 𝑐 to take 2~8 [7]. 

For the parameter estimation without masked data, Zhang et 

al [34, 35] have developed the likelihood function of initial 

reliability and failure rate, where the parameters of the 

component reliability can be estimated by ordinary methods 

separately. When the exponential distributions are applied for 

the inherent storage lifetimes of components, the ML estimates 

of the parameters can be obtained by solving the ML equations 

numerically. According to the function of storage reliability of 

component in Eq. (4), the set of nonlinear likelihood equations 

can be given by 

{
 
 

 
 ∑

(𝑛𝑖𝑗 − 𝑠𝑖𝑗) 𝑒𝑥𝑝( − 𝜆𝑖𝑡𝑗)

1 − 𝑅0𝑖 𝑒𝑥𝑝( − 𝜆𝑖𝑡𝑗)
=

1

𝑅0𝑖
∑𝑠𝑖𝑗

𝑣

𝑗=1

𝑣

𝑗=1

∑
𝑡𝑗(𝑛𝑖𝑗 − 𝑠𝑖𝑗)𝑅0𝑖 𝑒𝑥𝑝( − 𝜆𝑖𝑡𝑗)

1 − 𝑅0𝑖 𝑒𝑥𝑝( − 𝜆𝑖𝑡𝑗)
= ∑𝑠𝑖𝑗𝑡𝑗

𝑣

𝑗=1

𝑣

𝑗=1

, 

𝑖 = 1,2,⋯ ,𝑚.                                                  (10) 

Note that the set of equations include 2𝑚 equations, and the 

closed-form ML estimates are algebraically intractable using 

the data in Table 1 except under certain tight restrictions. 

On the other hand, using the testing data of storage 

components in Table 1, the reliability of each component at time 

𝑡𝑗 can be written as 

𝑅𝑖(𝑡𝑗) = 𝑅0𝑖 𝑒𝑥𝑝( − 𝜆𝑖𝑡𝑗), 𝑖 = 1,2,⋯ ,𝑚, 𝑗 = 1,2,⋯ , 𝑣. 

Taking logarithm of the reliability function mentioned above, 

the linear equations can be given as follows: 

𝑌𝑖𝑗 = 𝑎𝑖 + 𝑏𝑖𝑡𝑗,   (11) 

where 𝑌𝑖𝑗 = 𝑙𝑛[𝑅𝑖(𝑡𝑗)], 𝑎𝑖 = ln(𝑅0𝑖) , 𝑏𝑖 = −𝜆𝑖 , 𝑖 = 1,2,⋯ ,𝑚,

𝑗 = 1,2,⋯ , 𝑣. 

Usually, the LS estimates are given as follows since the 

analytic formulas can be written. For a fixed component 𝑖 , 

applying the estimates given in Eq. (9) to replace 𝑅𝑖(𝑡𝑗), 𝑗 =

1, 2,⋯ , 𝑣 , the LS estimates of parameters 𝑎𝑖  and 𝑏𝑖  can be 

written as 

�̂�𝑖 = −�̂�𝑖 =
∑ (𝑡𝑗 − 𝑡̅)
𝑣
𝑗=1 {ln [�̂�𝑖(𝑡𝑗)] − �̅�𝑖𝑙𝑛}

∑ (𝑡𝑗 − 𝑡̅ )
2𝑣

𝑗=1

, 

�̂�𝑖 = �̅�𝑖 − �̂�𝑖𝑡̅ = �̅�𝑖𝑙𝑛 + �̂�𝑖𝑡̅ = 𝑙𝑛(�̂�0𝑖). 

Then the estimates of initial reliability 𝑅0𝑖 and failure rate 

𝜆𝑖 for component 𝑖 can be expressed as 

�̂�𝑖 = −
∑ (𝑡𝑗 − 𝑡̅) {ln[�̂�𝑖(𝑡𝑗)] − �̅�𝑖𝑙𝑛}
𝑣
𝑗=1

∑ (𝑡𝑗 − 𝑡̅)
2𝑣

𝑗=1

,         (12) 

�̂�0𝑖 = 𝑒𝑥𝑝(�̅�𝑖𝑙𝑛 + 𝜆𝑖𝑡̅),  (13) 

where �̅�𝑖 =
1

𝑣
∑ 𝑌𝑖𝑗
𝑣
𝑗=1 ,  �̅�𝑖𝑙𝑛 =

1

𝑣
∑ 𝑙𝑣
𝑗=1 𝑛[�̂�𝑖(𝑡𝑗)],  𝑡̅ =

1

𝑣
∑ 𝑡𝑗
𝑣
𝑗=1 , 

𝑖 = 1,2,⋯ , 𝑣. 

Similarly, for the storage system, the LS estimates of 

parameters 𝜆 and 𝑅0 can be represented as 

�̂� =
∑ (𝑡𝑗 − 𝑡̅ ){ln[�̂�(𝑡𝑗)] − �̅�𝑙𝑛}]
𝑣
𝑗=1

∑ (𝑡𝑗 − 𝑡̅ )
2𝑣

𝑗=1

,                      (14) 

�̂�0 = exp(�̅�𝑙𝑛 + 𝜆𝑡̅) ,                                (15) 

where �̅�𝑙𝑛 =
1

𝑣
∑ 𝑙𝑣
𝑗=1 𝑛(�̂�(𝑡𝑗)), 𝑡̅ =

1

𝑣
∑ 𝑡𝑗
𝑣
𝑗=1 . 

Obviously, the storage reliabilities of components using Eqs. 

(12) and (13), and systems using Eqs. (14) and (15), can be 

evaluated and predicted based on the field information without 

masked data. However, if there exists the masked data as 

displayed in Table 1, then the likelihood function of all 

parameters will become a multivariable function with a very 

high dimension, and therefore the ML estimates of the 

parameters are difficult to be found [13]. 

3.3 Parameter estimation with masked data 

In some cases, the reliability models can contain both 

observable variables and hidden or latent variables. If the 

variables in the reliability model are all the observable variable, 

then one can directly estimate the parameters in the model using 

ML or Bayesian estimation technique based on the given data. 

However, when there exist the hidden variables in the reliability 

models, the previous mentioned measures cannot estimate these 

parameters. In 1977, Dempster et al. [4] propose the EM 

algorithm which can be applied to estimate the parameters of 

probability models with hidden variables. Recently, the EM 
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algorithm has been applied to solve the ML parametric 

estimation in software reliability when the masked data are 

presented [21, 23, 32]. 

3.3.1 EM algorithm and its modification 

For the parametric estimation based on the storage information 

with masked data, the general ideal of the EM algorithm is to 

apply the initial value 𝜃0 of the unknown parameter to calculate 

the expectation of the hidden data. If the complete data of the 

storage products are available, then the ML estimate 𝜃1 in the 

reliability model can be obtained, and then repeat the procedure 

by taking 𝜃1 as the new initial values, until the stable values are 

found under the specified convergence condition. However, the 

ML estimates for the parameters in the storage reliability model 

of components do not exist analytic forms, and indicates that the 

traditional EM algorithm is very complicated for finding these 

parameters in the models with masked data. Note that the LS 

estimates of the parameters in the components’ reliability 

models exist close analytic form as given in formulas (12) and 

(13). For taking full advantage of the LS technique’s advantages, 

therefore a modified EM-like measure called EM-LS algorithm, 

is developed and presented as follows: 

E-step: Give the initial values of the parameters 𝜃0, find out 

the expectations of the failure data of components from the 

failed system; 

M-LS-step: Using the estimated failure data and the non-

masked failure data from the series system, to update the field 

data from components and then estimate the parameter 𝜃1 based 

on the LS estimate. Whereafter, the parameter 𝜃1 will be taken 

as the new initial values of the E-step, and 𝑘 times iterations are 

carried out until the difference of the two neighboring 

parameters less than a given small positive value 𝜀, i.e. 

|𝜃(𝑘) − 𝜃(𝑘−1)| < 𝜀,  → 0. 

Up to now, there are no similar studies on the EM-LS 

algorithm found in the existing researches. Theoretically, if the 

LS estimates can be easily obtained, then the extended LS 

algorithm can be used for any model, such as the storage 

lifetimes follow the exponential, Weibull or log-normal 

distributions [11]. To verify the effectiveness of the EM-LS 

algorithm, the case of exponential lifetime for storage 

component and system is applied in this section. 

3.3.2 EM-LS algorithm for the binominal-type data 

Denoted by 𝑛  the number of tested systems, 𝑓  the failure 

number, and 𝑠 the survive number. If the storage reliability of 

the 𝑖th component is 𝑅𝑖 (𝑖 = 1, 2,···, 𝑚), then the series system 

has the reliability  𝑅 = 𝑅1𝑅2⋯𝑅𝑚 . Assuming that these 

systems’ failures are not identified due to which component for 

a series structure, it can simply be proved that conditional 

on (𝑛, 𝑓). Using the law of large numbers, for ∀𝜀 > 0, one has 

lim
𝑛→∞

𝑃𝑟 { | 
𝑓

𝑛
− (1 − 𝑅)| < 𝜀 } = 1. 

Let 𝑓𝑖
𝐸 be the expected number of failures of 𝑖th component, 

then one has the probability 

lim
𝑛→∞

𝑃𝑟 { | 
𝑓𝑖
𝐸

𝑛
− (1 − 𝑅𝑖)| < 𝜀 } = 1. 

Therefore, the ratio of 𝑓𝑖
𝐸/𝑛 to 𝑓/𝑛 can be approximated to 

(1 − 𝑅𝑖)/(1 − 𝑅), and the expected number 𝑓𝑖
𝐸 can be deduced 

as 

𝑓𝑖
𝐸 =

1 − 𝑅𝑖
1 − 𝑅

𝑓, 𝑖 = 1,2,⋯ ,𝑚.                           (16) 

Note that a series system failed if and only if one component 

in the system failed, so the sum satisfies 𝑓1
𝐸 + 𝑓2

𝐸 +⋯+ 𝑓𝑚
𝐸 ≥

𝑓 since one system failure can be caused by more components. 

Concerning on the EM-LS algorithm, the formula (16) will 

be used to convert the system binomial data (𝑛, 𝑓)  into 

component binomial data (𝑛, 𝑓𝑖
𝐸) (𝑖 = 1,2,⋯ ,𝑚) . For the 

masked data in Table 1, the improved EM-LS algorithm can be 

presented as follows: 

E-step: Given the initial values of the component initial 

reliabilities (𝑅01
0 , 𝑅02

0 ,⋯ , 𝑅0𝑚
0 )  and failure rates  

(𝜆1
0, 𝜆2

0 , ⋯ , 𝜆𝑚
0 ), calculate as the following steps: 

Step 1. At testing times 𝑡𝑗(𝑗 = 1,2,⋯ , 𝑣), the reliabilities of 

components are given by 

𝑅𝑖(𝑡𝑗) = 𝑅0𝑖
0 exp(−𝜆𝑖

0𝑡𝑗), 𝑖 = 1,2,⋯ ,𝑚,  (17) 

and the system reliability is 

𝑅(𝑡𝑗) = 𝑅1(𝑡𝑗)𝑅2(𝑡𝑗)⋯𝑅𝑚(𝑡𝑗),  (18) 

where 𝑗 = 1,2,⋯ , 𝑣. 

Step 2. For the masked system data (𝑛𝑗 ,  𝑓𝑗) at testing time 

𝑡𝑗, the expected number of failures in the system, using Eq. (16), 

is given by 

𝑓𝑖𝑗
𝐸 =

1 − 𝑅𝑖(𝑡𝑗)

1 − 𝑅(𝑡𝑗)
𝑓𝑗, 𝑖 = 1,2,⋯ ,𝑚;  𝑗 = 1,2,⋯ , 𝑣.       (19) 

Step 3. Update the component binomial data in Table 1 as 
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{
𝑛𝑖𝑗
′ = 𝑛𝑖𝑗 + 𝑛𝑗

𝑓𝑖𝑗
′ = 𝑓𝑖𝑗 + 𝑓𝑖𝑗

𝐸 ,                                     (20) 

where, 𝑖 = 1,2,⋯ ,𝑚;  𝑗 = 1,2,⋯ , 𝑣. 

M-LS-step: Apply the estimated component binomial data 

calculated by formula (20) to Eq. (19), the reliability of 

component 𝑖 at time 𝑡𝑗 can be estimated as 

�̂�𝑖
′(𝑡𝑗) = 1 −

𝑓𝑖𝑗 + 𝜃𝑖𝑗𝑓𝑗

𝑛𝑖𝑗 + 𝑛𝑗
,                            (21) 

where, the parameter 𝜃𝑖𝑗( 𝑖 = 1, 2, ⋯ , 𝑚, 𝑗 = 1, 2, ⋯ , 𝑣)  are 

computed by 

𝜃𝑖𝑗 =
1 − 𝑅0𝑖

0 exp(−𝜆𝑖
0𝑡𝑗)

1 − ∏ [𝑅0𝑖
0 exp(−𝜆𝑖

0𝑡𝑗)]
𝑚
𝑖=1

, 𝑖 = 1, 2, ⋯ , 𝑚, 𝑗

= 1, 2, ⋯ , 𝑣. 

Furthermore, the LS estimates for the failure rates and initial 

reliabilities of the components are represented as 

{
�̂�𝑖
1 = −

∑ (𝑡𝑗 − 𝑡̅ )[𝑙𝑛�̂�𝑖
′(𝑡𝑗) − �̅�𝑖𝑙𝑛

′ ]𝑣
𝑖=1

∑ (𝑡𝑗 − 𝑡̅ )
2𝑣

𝑗=1

�̂�0𝑖
1 = 𝑒𝑥𝑝(�̅�𝑖𝑙𝑛

′ + �̂�𝑖
1𝑡̅)

,         (22) 

where, �̅�𝑖𝑙𝑛
′ =

1

𝑣
∑ 𝑙𝑣
𝑗=1 𝑛[�̂�𝑖

′(𝑡𝑗)], 𝑡̅ =
1

𝑣
∑ 𝑡𝑗
𝑣
𝑗=1 , 𝑖 = 1,2,⋯ ,𝑚. 

When the LS-step is finished, the E-step will be repeated, 

but the initial values (�̂�01
0 , �̂�02

0 ,⋯ , �̂�0𝑚
0 )  and (̂1

0
, ̂2
0
,···, ̂𝑚

0
) 

will be replaced by the LS estimates (�̂�01
1 , �̂�02

1 ,⋯ , �̂�0𝑚
1 )  and 

(�̂�1
1 , �̂�2

1 ,⋯ , �̂�𝑚
1 ). The iteration of the E-step and M-LS-step can 

be terminated when the stable LS estimates are obtained. 

Usually, a small positive number 𝜀  is fist appointed, and the 

iteration continues until the difference of two adjacent estimates 

is lower than the given value 𝜀, i.e. 

𝛥𝑅0𝑖 = |�̂�0𝑖
𝑘 − �̂�0𝑖

𝑘−1| < 𝜀, 𝛥𝜆𝑖 = |�̂�𝑖
𝑘 − �̂�𝑖

𝑘−1| < 𝜀. 

Theoretically speaking, the estimate of the storage reliability 

more and more approaches to the true value as the number of 

tested products increases. Usually, the number of storage 

products for testing, in reality, may be small because of the high 

expenses such as Missiles, mines, and sonobuoys etc. [18]. 

However, in the early 1980s, the Reliability Department of 

Sandia National Laboratories collected and analyzed  

a relatively large amount of data which depicted the 

performance of certain electronic parts after long periods of 

dormant storage, for example, Sandia accumulated the 

performance data about 261974 resistors and 85976 capacitors 

from weapons which had stockpiled for 10 years or 20 years old 

[19]. However, it is rare that the number of storage components 

and systems for experiment is large in reality. In order to 

illustrate the practicability and the validity of the proposed EM-

LS approach, the data-based examples will be illustrated in 

Section 4. 

4. 4. Illustration 

To illustrate the EM-LS algorithm to estimate the storage 

reliability, a simple series system comprised of two components 

is considered in this section. For the purpose of illustration, the 

simulated binomial-type masked data (𝑛𝑗, 𝑓𝑗 , 𝑠𝑗)  and 

(𝑛𝑖𝑗 , 𝑓𝑖𝑗 , 𝑠𝑖𝑗) (𝑖 = 1,2,⋯ ,𝑚, 𝑗 = 1,2,⋯ , 𝑣) is listed in Table 3, 

where the data from the failed systems concludes the masked 

failure information of components. According to the storage 

reliability models (5), the initial reliability 𝑅01, 𝑅02 and failure 

rates 1, 2  of component 1 and 2, need to be estimated 

respectively. 

Table 3．Failure and success data of system and components. 

Testing 

times/months 

Causes of failures 

System Component 1 Component 2 

6 (50,1,49) (50,0,50) (50,1,49) 

12 (50,1,49) (50,1,49) (50,2,48) 

18 (40,1,39) (40,1,39) (40,2,38) 

24 (40,2,38) (40,2,38) (40,3,37) 

30 (30,1,19) (40,2,38) (40,3,37) 

36 (30,3,28) (30,1,29) (30,2,28) 

42 (20,2,18) (30,2,28) (30,2,28) 

48 (20,2,18) (30,2,28) (30,2,28) 

54 (15,2,13) (20,1,19) (15,2,13) 

60 (15,3,12) (20,2,18) (15,3,12) 

The cases without and with masked data for a series 

connection systems are presented as follows: 

4.1 Masked failure data from series connection systems 

If the masked data from the series systems is not considered in 

the case, then the failure rate and initial reliability of the 

components constituting the system, based on Eqs. (9), (12), (13) 

and using the corresponding data in Table 3, can be estimated as 

0.001607 and 0.992667 for component 1, and 0.002962 and 

0.998549 for component 2. According to the failure data of 

system, based on Eqs. (14) and (15), the parameters of the 

storage reliability function of the system can be estimated as 

0.003113 and 0.986241. However, using Newton iterative 

method and the likelihood equations in Eq. (10), the ML 

estimates of failure rate and initial reliability can be obtained as 
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0.002103 and 0.996637 for component 1, and 0.003121 and 

0.999788 for component 2, and 0.004989 and 0.991325 for the 

system. 

If the masked data from the storage system is considered in 

this case, then the proposed EM-LS algorithm would be used to 

find the known parameters. According to Eqs. (21) and (22), the 

initial values of component reliability (�̂�01
0 , �̂�02

0 )  and failure 

rate (�̂�1
0, �̂�2

0)  can be updated as (�̂�01
1 , �̂�02

1 )  and (�̂�1
1 , �̂�2

1) . The 

iteration of the E-step and LS-step can be terminated when the 

stable LS estimates are obtained. The initial reliability and 

initial failure rate of component 1 and 2 varying with the 

number of iterations are shown in Fig. 1. 

From Fig. 1, one can see that the parameter estimates based 

on the EM-LS algorithm have steady convergence values. 

Through about 200 iterations, the convergence values of the 

initial reliability and failure rate for component 1 are about 

0.996017 and 0.001394, and for component 2 are about 

0.999031 and 0.001748. Furthermore, using the estimates of 

parameters for component 1 and 2, the initial reliability of the 

system based on Eq. (7) at zero time point is 0.995052 and the 

failure rate based on Eq. (8) is 0.002142. However, applying Eq. 

(20) to update the data 𝑛𝑖𝑗 and 𝑠𝑖𝑗  in Eq. (10), the ML estimates 

of initial reliabilities and failure rates can be approximated as 

0.993704 and 0.001992 for component 1, and 0.995011 and 

0.002643 for component 2. Using the estimates of parameters 

for component 1 and 2, the initial reliability and failure rate of 

the system can be computed as 0.988746 and 0.003632. 

 

 

Fig. 1. Initial reliability and failure rate of component 1 and 2. 

Clearly, the convergence values, when the data in Table 2 

from storage system with and without masked data using LS and 

ML techniques, the associated estimates are listed in Table 4.

Table 4. Estimates for the parameters of components 1 and 2. 

Data Methods 
Component 1          Component 2 System 

𝑅01        𝜆1 𝑅02        𝜆2 𝑅0        𝜆 

Without masked data 
LS/N 0.992667   0.001607 0.998549   0.002962 0.986241   0.003113 

ML/N 0.996637   0.002103 0.999788   0.003121 0.991325   0.004989 

With masked data 
EM-LS/Y 0.996017   0.001394 0.999031   0.001748 0.995052   0.002124 

ML/Y 0.993704   0.001992 0.995011   0.002643 0.988746   0.003632 

Note that the acronym “LS/N” in Table 4 denotes the 

traditional LS method and “ML/N” the ML method without 

masked data from system, and “EM-LS/Y” is the improved EM-

LS method and the traditional ML method which consider the 

masked data of components from the storage system. 

Obviously, the estimates of the failure rates and initial 

reliabilities with and without applying masked system data 

differ to each other. The differences between the estimated 

parameters in the models indicate that the failure data from 

storage system should be used when the component reliability 

is evaluated. Using the failure data of components with and 

without masked data, the estimated reliability by the traditional 

LS and ML measure without masked data and the EM-LS and 

ML algorithm with masked data, respectively, are displayed for 
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component 1 in Fig. 2, and for component 2 in Fig. 3, and for 

the series system in Fig. 4. 

 

Fig. 2. Observed and estimated reliability for component 1. 

 

Fig. 3. Observed and estimated reliability for component 2. 

 

Fig. 4. Observed and estimated reliability for the parallel 

system. 

Note that the acronym “OR” in Fig. 3, Fig. 4 and Fig. 5 

denotes the observed reliability, and “ER” denotes the estimated 

reliability. 

From Fig. 2 and Fig. 3, one can apparently observe that the 

reliability degrades with storage time under the testing 

condition, and the storage reliabilities with masked data are 

slightly higher than that without masked data for any 

components in the system, and the same results for the system 

in Fig 4. The fittings of storage reliability for the components 

and system behave as a more optimistic prediction with the 

masked data. Actually, the latent failure information in the 

storage system does not fully used when the parameters in the 

models are only estimated by the observed data without masked 

data. Furthermore, the predictions of storage reliability are of 

interest for some engineers based on the estimated parameters, 

and some estimated results for component 1, component 2 and 

the series system, are presented in Table 5, Table 6 and Table 7 

respectively.

Table 5. Reliability estimates with and without masked data from storage system for component 1. 

Storage age 

ti (months) 

Observed reliability Estimated reliability 

E-BE LSE/N MLE/N EM-LSE/Y MLE/Y 

12 0.9714 0.9737 0.9718 0.9795 0.9702 

24 0.9398 0.9551 0.9476 0.9632 0.9473 

36 0.9539 0.9369 0.9240 0.9473 0.9249 

48 0.9206 0.9190 0.9009 0.9316 0.9031 
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Table 6. Reliability estimates with and without masked data from storage system for component 2. 

Storage age 

ti (months) 

Observed reliability Estimated reliability 

E-BE LSE/N MLE/N EM-LSE/Y MLE/Y 

12 0.9515 0.9637 0.9630 0.9783 0.9639 

24 0.9136 0.9300 0.9276 0.9580 0.9339 

36 0.9206 0.8976 0.8935 0.9381 0.9047 

48 0.9206 0.8662 0.8607 0.9186 0.8765 

Table 7. Reliability estimates with and without masked data for the storage system 

Storage age 

ti (months) 

Observed reliability Estimated reliability 

E-BE LSE/N MLE/N EM-LSE/Y MLE/Y 

12 0.9515 0.9501 0.9337 0.9700 0.9466 

24 0.9398 0.9152 0.8795 0.9456 0.9062 

36 0.8852 0.8817 0.8284 0.9218 0.8676 

48 0.8835 0.8494 0.7802 0.8986 0.8306 

where, the acronym “E-BE” denotes the E-Bayesian 

estimates at the fixed testing point in time, “LSE/N” represents 

the predicted reliability based on the traditional LS method and 

“MLE/N” is the predicted reliability based on the traditional ML 

method without masked data. The acronym “EM-LSE/Y” is the 

predicted reliability based on the improved EM-LS method and 

“MLE/Y” is that based on the traditional ML method with 

masked data. 

From the estimated results in Table 5, Table 6 and Table 7, 

one can find these estimated reliabilities based on the masked 

data are more optimistic than those without masked data at the 

determined time, and the results provide an important reference 

for the engineers which evaluate the reliability of the storage 

products. Furthermore, if it is required that the reliability of the 

storage products is above 80%, the allowable storage period 

under the testing condition can be predicted by the estimated 

parameters. Specifically, the predicted results, by doing 

decimals to round up and round down numbers, are presented 

in Table 8. 

Table 8. Predictions for the allowable storage period at the 

reliability 80% 

Method 
Predicted storage period (months) 

Component 1   Component 2   System 

Without masked data 
LS/N 134               75                  67 

ML/N 105               72                  43 

With masked data 
EM-LS/Y 157              127               103 

ML/Y 108              82                   58 

The results in Table 8 indicate that there is a little difference 

between the predicted storage periods using masked data and 

using observed data. When the masked data is considered, the 

estimated storage periods is upper than that of non-masked data 

(i.e., observed data) under the corresponding methods. As far as 

the actual cases concerned, one can believe that the estimation 

with masked data is superior to that without masked data. 

Moreover, the estimated parameters can be also used to make 

the prediction of storage reliability. In order to compare the 

predicted reliabilities with and without masked data, some 

results are presented in Table 9, Table 10 and Table 11. 

Table 9. Predicted reliabilities with and without masked data for 

component 1. 

Storage age 

𝑡𝑖  (months) 

Predicted reliability 

LSE/N MLE/N EM-LSE/Y MLE/Y 

66 0.8928 0.8675 0.9085 0.8713 

72 0.8842 0.8566 0.9009 0.8609 

78 0.8757 0.8459 0.8934 0.8507 

84 0.8673 0.8353 0.8860 0.8406 

Table 10. Predicted reliabilities with and without masked data 

for component 2. 

Storage age 

𝑡𝑖  (months) 

Predicted reliability 

LSE/N MLE/N EM-LSE/Y MLE/Y 

66 0.8212 0.8137 0.8902 0.8357 

72 0.8068 0.7986 0.8809 0.8226 

78 0.7926 0.7838 0.8717 0.8096 

84 0.7786 0.7692 0.8626 0.7969 
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Table 11. Predicted reliabilities with and without masked data 

for the parallel system. 

Storage age 

𝑡𝑖  (months) 

Predicted reliability 

LSE/N MLE/N EM-LSE/Y MLE/Y 

66 0.8031 0.7132 0.8649 0.7780 

72 0.7882 0.6922 0.8539 0.7612 

78 0.7736 0.6718 0.8431 0.7448 

84 0.7593 0.6519 0.8325 0.7288 

It can be seen that the predictions of storage reliability with 

and without masked data have a little difference, and the 

predicted values with masked data are slightly upper than that 

without masked data. Maybe one believes that, all the masked 

data from the storage systems are combined to the observed data 

from the storage components, can obtain a more accurate 

estimate. As far as the engineering practice concerned, these 

results in the Tables 9, 10, and 11 present a more reasonable 

prediction when the masked data is considered, and it seems that 

the combined prediction is reasonable measure to evaluate the 

reliability of products being in storage. 

According to the principle of consistent estimator associated 

with sample size, the masked data from the storage system 

which imbedded into the observed data can improve the 

estimated accuracy, because the testing data from the storage 

component and the masked data from the storage system are all 

used for estimating the parameters in the proposed models. 

5. Conclusion 

Consider the storage system with series connection and 

exponential life distribution, the storage reliability model with 

initial failures is studied in this paper. If the survival 

components for a series storage system can not be detected and  

the cause of system failures is hidden, then the evaluation of 

storage reliability for a component or system would become 

difficult.  

For making full use of the masked success data from  

a storage system, an LS measure with an EM-like algorithm is 

proposed for the series system based on the binomial-type 

failure data. By applying the EM-LS algorithm to update the 

testing data, the estimates of initial reliability and failure rate of 

the components constituting the series system are presented, and 

a modified EM-like algorithm procedure is developed. Finally, 

a numerical example is provided to illustrate the EM-LS method, 

and the proposed measure can make use of the survival 

components information in the failed series system. The 

estimates for the storage reliability of the components and 

system are different with and without masked data, where the 

storage reliability which considers the masked data in storage 

system is slightly upper than that without masked data. The 

proposed EM-LS method has greatly simplified the parametric 

estimation in the case of the masked data. 

In practice, a storage decision can usually be made based on 

simple engineering judgment and practical circumstance, and 

the model which consider the masked data is generally worth 

studying because of making use of the masked success data in 

the series system. To more accurately evaluate the reliability of 

the storage system, the data from the existing and the similar 

products perhaps can be integrated into the field-testing data. 

This is something that is very much well worth exploring 

through special processing for obtaining accurate estimates in 

our future work. 

Nomenclature 

Acronyms 

ML  maximum likelihood               LS  least squares 

EM  Expectation and Maximization       MTTFmean time to failure 

MLE  ML estimate                      LSE  LS estimate 

EM-LS EM-like measure based on the LS method. 

LS/N Traditional LS method without masked data from system 

LSE/N Predicted reliability based on the LS/N measure 

ML/N Traditional ML method without masked data from system 

MLE/N Predicted reliability based on the ML/N measure 
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EM-LS/Y  Proposed EM-LS method with masked data from system 

EM-LSE/Y Predicted reliability based on the EM-LS measure 

ML/Y Traditional ML method with masked data from system 

MLE/Y Predicted reliability based on the ML/Y measure 

Notations 

𝑇 random variable of the storage lifetime 

𝑅𝑠(𝑡) probability that 𝑇 > 𝑡 given that the item is perfect at time zero 

𝑚 number of components constituting the series system 

𝑁 total number of systems put into storage at the beginning 

𝑁𝑖0 total number of storage components 𝑖 (𝑖 = 1, 2,⋯ ,𝑚) 

𝑣 total number of testing times 

𝜆 failure ratio of the storage system 

𝑡𝑗 predetermined time points for testing, 𝑗 = 1,2,⋯ , 𝑣 

𝜆𝑖 failure ratio of the 𝑖-th storage component, 𝑖 = 1, 2,⋯ ,𝑚 

𝑅𝑖 storage reliability of the 𝑖-th component 

𝑅𝑖(𝑡) reliability of the 𝑖-th components, 𝑖 = 1, 2,⋯ ,𝑚 

�̂�𝑖(𝑡𝑗) MLE of component 𝑖 at time 𝑡𝑗 

�̂�𝑖
′(𝑡𝑗) MLE of component 𝑖 at time 𝑡𝑗 with masked data 

𝐸𝑇|𝑛 MTTF of the system which composed of 𝑛 components. 

𝑛𝑗 number of tested systems at time 𝑡𝑗 

𝑓𝑗 number of failed systems at time 𝑡𝑗 

𝑠𝑗 number of surviving systems at time 𝑡𝑗 

𝑁𝑖0 number of storage components 𝑖 

𝑛𝑖𝑗 number of tested components 𝑖 at time 𝑡𝑗 

𝑓𝑖𝑗 number of failed components 𝑖 at time 𝑡𝑗 

𝑠𝑖𝑗 number of surviving components 𝑖 at time 𝑡𝑗 

�̂� estimate of failure rate for the series system 

�̂�𝑖 estimate of failure rate 𝜆𝑖 for component 𝑖 

𝜆𝑖
0 initial value of initial reliability for component 𝑖 

�̂�𝑚
𝑘  failure rate after the 𝑘-th iterations based on EM-LS measure 

𝑅0 initial reliability of the storage system 

𝑅0𝑖 initial reliability of the 𝑖-th storage component, 𝑖 = 1, 2,⋯ ,𝑚 

�̂�0 estimate of initial reliability for the series system 
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�̂�0𝑖 estimate of initial reliability 𝑅0𝑖 

𝑅0𝑖
0 initial value of initial reliability for component 𝑖 

�̂�0𝑖
𝑘 initial reliability after the 𝑘-th iterations based on EM-LS measure 

𝑠𝑖
𝐸 expected number of failed components 𝑖 

𝑛𝑖𝑗
′  updated number of components 𝑖 at time 𝑡𝑗 with masked data 

𝑠𝑖𝑗
′  updated number of failed components 𝑖 at time 𝑡𝑗 with masked data 
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